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1 Introduction to Shannon Entropy

1.1 Shannon entropy

Information theory is unusual in that it originated from the work of one person, Claude
Elwood Shannon, in the late 1950s.1 Shannon’s idea was how to numerically measure the
“amount of (statistical) uncertainty” inherent in a probabilistic experiment.

Example 1.1 (Coin flipping). The “uncertainty” in (1/2, 1/2) is “more” than in (3/4, 1/4),
which is “more” than in (99/100, 1/100).

Shannon developed a calculus to work with such quantities. This notion is called
entropy.

Definition 1.1. Consider a probability distribution (p(1), . . . , p(d)) on {1, . . . , d}. The
Shannon entropy of p is

H(p) = −
d∑
i=1

p(i) log p(i).

Here, the log is base 2, which was Shannon’s convention and the convention for engi-
neers. In mathematics and statistical mechanics, the natural logarithm is used. We take
the convention that 0 log 0 = 0 (which is limx↓0 x log x).

Example 1.2. Note that
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= log 2 = 1.

This is a kind of normalization.

1Shannon lived from 1916-2001. His master’s thesis is also considered a landmark. It introduced the
boolean circuit view of computing. There is a 2017 movie about Shannon called The Bit Player and a book
called A Mind at Play.
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1.2 Motivation for the formula of entropy

To motivate the actual formula, consider d = 2 and n independent copies of {1, 2}-valued
random variables with probability distribution p. For a sequence xn of 1s and 2s,

p(xn) =

n∏
i=1

p(xi)

= p(1)N(1|xn)p(2)N(2|xn)

= 2n(N(1|xn)/n log p(1)+N(2|xn)/n log p(2)),

where N(i | xn) is the number of times i appears in xn. But by the strong law of large

numbers, N(i|xn)
n → p(1) almost surely as n→∞. So

p(xn) ≈ (2p(1) log p(1)+p(2) log p(2))n.

This suggests that −p(1) log p(1)− p(2) log p(2) represents the “uncertainty” in one toss.

1.3 Expectation formulation of entropy

If X is a random variable taking values in {1, . . . , d} with probability distribution p, i.e.
P(X = i) = p(i) for 1 ≤ i ≤ d, we write H(X) for H(p). With this notation,

H(X) =

d∑
i=1

P(X = i) log
1

P(X = i)
= E[log 1/p(X)].

1.4 Concavity of Shannon entropy and entropy of uniform distributions

Fix d ≥ 2. The set of probability distributions on {1, . . . , d} is called the unit d-simplex
in Rd. We can write it as {(p(1), . . . , p(n)) : p(i) ≥ 0,

∑d
i=1 p(i) = 1}. This is a convex

set, and H can be viewed as a function on this set.

Proposition 1.1. H is a concave function on the (unit) d-simplex for each fixed d.
That is, for all p0, p1 ∈ {1, . . . , d} and λ ∈ [0, 1], if pλ denotes λp1 + (1− λ)p0, then

H(pλ) ≥ λH(p1) + (1− λ)H(p0).

Proof. Because H(p) = −
∑d

i=1 p(i) log p(i), we want to check that x log x is convex. This
is twice differentiable, so it suffices to show that the second derivative is ≥ 0. Write

(x log x)′′ = (log2 e)(x loge x)′′

= (log2 e)(loge x+ 1)′

= (log2 e)
1

x
≥ 0.
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Corollary 1.1. The uniform distribution on {1, . . . , d} has the largest entropy among
probability distributions on {1, . . . , d}.

Proof. Let Sd denote the set of permutations of {1, . . . , d}. Then

(1/d, . . . , 1/d) =
1

d!

∑
σ∈Sd

(p(σ(1)), p(σ(2)), . . . , p(σ(d))),

so by the concavity of H,

H(1/d, . . . , 1/d) ≥ 1

d!

∑
σ∈Sd

H(p(σ(1)), p(σ(2)), . . . , p(σ(d)))

= H(p).

1.5 Conditional entropy

The entropy calculus starts with the definition of “conditional entropy.” Given a pair of
random variables (X,Y ), we consider H(X,Y ) − H(Y ) and denote this H(X | Y ). This
is known as the conditional entropy of X given Y . Next time, we will consider the
information I(X;Y ) := H(X) − H(X | Y ) and see that this is actually symmetric in X
and Y .
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